Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Authors
Abstract:
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid models for time series forecasting. Several researches in the literature have been shown that these models can outperform single models. In this paper, the predictive capabilities of three different models in which the autoregressive integrated moving average (ARIMA) as linear model is combined to the multilayer perceptron (MLP) as nonlinear model, are compared together for time series forecasting. These models are including the Zhang’s hybrid ANNs/ARIMA, artificial neural network (p,d,q), and generalized hybrid ANNs/ARIMA models. The empirical results with three well-known real data sets indicate that all of these methodologies can be effective ways to improve forecasting accuracy achieved by either of components used separately. However, the generalized hybrid ANNs/ARIMA model is more accurate and performs significantly better than other aforementioned models.
similar resources
Combining Time Series Models for Forecasting
Statistical models (e.g., ARIMA models) have been commonly used in time series data analysis and forecasting. Typically one model is selected based on a selection criterion (e.g., AIC), hypothesis testing, and/or graphical inspections. The selected model is then used to forecast future values. However, model selection is often unstable and may cause an unnecessarily high variability in the nal ...
full textOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
full textTime series models for forecasting: Testing or combining?
In this paper we compare forecasting performance of hypothesis testing procedures with a model combining algorithm called AFTER. Testing procedures are commonly used in practice to select a model based on which forecasts are made. However, besides the well-known difficulty in dealing with multiple tests, the testing approach has a potentially serious drawback: controlling the probability of Typ...
full textDynamic generalized linear models for non-Gaussian time series forecasting
The purpose of this paper is to provide a discussion, with illustrating examples, on Bayesian forecasting for dynamic generalized linear models (DGLMs). Adopting approximate Bayesian analysis, based on conjugate forms and on Bayes linear estimation, we describe the theoretical framework and then we provide detailed examples of response distributions, including binomial, Poisson, negative binomi...
full textComparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran
In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...
full textMy Resources
Journal title
volume 4 issue 4
pages 265- 285
publication date 2011-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023